Qt Connect Parent Slot

admin  4/1/2022

This example was ported from the PyQt4 version by Guðjón Guðjónsson.

One key and distinctive feature of Qt framework is the use of signals and slots to connect widgets and related actions. But as powerful the feature is, it may look compelling to a lot of developers not used to such a model, and it may take some time at the beginning to get used to understand how to use signals and slots properly. How Qt Signals and Slots Work - Part 3 - Queued and Inter Thread Connections This blog is part of a series of blogs explaining the internals of signals and slots. Part 1 - How Qt Signals and Slots Work. Qt has a unique signal and slot mechanism. This signal and slot mechanism is an extension to the C programming language. Signals and slots are used for communication between objects. A signal is emitted when a particular event occurs. A slot is a normal C method; it is called when a signal connected to it is emitted. Qt documentation: Multi window signal slot connection. A simple multiwindow example using signals and slots. There is a MainWindow class that controls the Main Window view.

Introduction

In some applications it is often necessary to perform long-running tasks, such as computations or network operations, that cannot be broken up into smaller pieces and processed alongside normal application events. In such cases, we would like to be able to perform these tasks in a way that does not interfere with the normal running of the application, and ensure that the user interface continues to be updated. One way of achieving this is to perform these tasks in a separate thread to the main user interface thread, and only interact with it when we have results we need to display.

This example shows how to create a separate thread to perform a task - in this case, drawing stars for a picture - while continuing to run the main user interface thread. The worker thread draws each star onto its own individual image, and it passes each image back to the example's window which resides in the main application thread.

The User Interface

We begin by importing the modules we require. We need the math and random modules to help us draw stars.

The main window in this example is just a QWidget. We create a single Worker instance that we can reuse as required.

The user interface consists of a label, spin box and a push button that the user interacts with to configure the number of stars that the thread wil draw. The output from the thread is presented in a QLabel instance, viewer.

We connect the standard finished() and terminated() signals from the thread to the same slot in the widget. This will reset the user interface when the thread stops running. The custom output(QRect, QImage) signal is connected to the addImage() slot so that we can update the viewer label every time a new star is drawn.

Qt Connect Signal Parent Slot

The start button's clicked() signal is connected to the makePicture() slot, which is responsible for starting the worker thread.

We place each of the widgets into a grid layout and set the window's title:

The makePicture() slot needs to do three things: disable the user interface widgets that are used to start a thread, clear the viewer label with a new pixmap, and start the thread with the appropriate parameters.

Since the start button is the only widget that can cause this slot to be invoked, we simply disable it before starting the thread, avoiding problems with re-entrancy.

We call a custom method in the Worker thread instance with the size of the viewer label and the number of stars, obtained from the spin box.

Whenever is star is drawn by the worker thread, it will emit a signal that is connected to the addImage() slot. This slot is called with a QRect value, indicating where the star should be placed in the pixmap held by the viewer label, and an image of the star itself:

We use a QPainter to draw the image at the appropriate place on the label's pixmap.

The updateUi() slot is called when a thread stops running. Since we usually want to let the user run the thread again, we reset the user interface to enable the start button to be pressed:

Now that we have seen how an instance of the Window class uses the worker thread, let us take a look at the thread's implementation.

The Worker Thread

The worker thread is implemented as a PyQt thread rather than a Python thread since we want to take advantage of the signals and slots mechanism to communicate with the main application.

We define size and stars attributes that store information about the work the thread is required to do, and we assign default values to them. The exiting attribute is used to tell the thread to stop processing.

Each star is drawn using a QPainterPath that we define in advance:

Before a Worker object is destroyed, we need to ensure that it stops processing. For this reason, we implement the following method in a way that indicates to the part of the object that performs the processing that it must stop, and waits until it does so.

For convenience, we define a method to set up the attributes required by the thread before starting it.

The start() method is a special method that sets up the thread and calls our implementation of the run() method. We provide the render() method instead of letting our own run() method take extra arguments because the run() method is called by PyQt itself with no arguments.

The run() method is where we perform the processing that occurs in the thread provided by the Worker instance:

Information stored as attributes in the instance determines the number of stars to be drawn and the area over which they will be distributed.

We draw the number of stars requested as long as the exiting attribute remains False. This additional check allows us to terminate the thread on demand by setting the exiting attribute to True at any time.

The drawing code is not particularly relevant to this example. We simply draw on an appropriately-sized transparent image.

For each star drawn, we send the main thread information about where it should be placed along with the star's image by emitting our custom output() signal:

Since QRect and QImage objects can be serialized for transmission via the signals and slots mechanism, they can be sent between threads in this way, making it convenient to use threads in a wide range of situations where built-in types are used.

Running the Example

We only need one more piece of code to complete the example:

This is the sequel of my previous article explaining the implementation details of the signals and slots.In the Part 1, we have seenthe general principle and how it works with the old syntax.In this blog post, we will see the implementation details behind thenew function pointerbased syntax in Qt5.

New Syntax in Qt5

The new syntax looks like this:

Why the new syntax?

I already explained the advantages of the new syntax in adedicated blog entry.To summarize, the new syntax allows compile-time checking of the signals and slots. It also allowsautomatic conversion of the arguments if they do not have the same types.As a bonus, it enables the support for lambda expressions.

New overloads

There was only a few changes required to make that possible.
The main idea is to have new overloads to QObject::connect which take the pointersto functions as arguments instead of char*

There are three new static overloads of QObject::connect: (not actual code)

The first one is the one that is much closer to the old syntax: you connect a signal from the senderto a slot in a receiver object.The two other overloads are connecting a signal to a static function or a functor object withouta receiver.

They are very similar and we will only analyze the first one in this article.

Pointer to Member Functions

Before continuing my explanation, I would like to open a parenthesis totalk a bit about pointers to member functions.

Here is a simple sample code that declares a pointer to member function and calls it.

Pointers to member and pointers to member functions are usually part of the subset of C++ that is not much used and thus lesser known.
The good news is that you still do not really need to know much about them to use Qt and its new syntax. All you need to remember is to put the & before the name of the signal in your connect call. But you will not need to cope with the ::*, .* or ->* cryptic operators.

These cryptic operators allow you to declare a pointer to a member or access it.The type of such pointers includes the return type, the class which owns the member, the types of each argumentand the const-ness of the function.

You cannot really convert pointer to member functions to anything and in particular not tovoid* because they have a different sizeof.
If the function varies slightly in signature, you cannot convert from one to the other.For example, even converting from void (MyClass::*)(int) const tovoid (MyClass::*)(int) is not allowed.(You could do it with reinterpret_cast; but that would be an undefined behaviour if you callthem, according to the standard)

Pointer to member functions are not just like normal function pointers.A normal function pointer is just a normal pointer the address where thecode of that function lies.But pointer to member function need to store more information:member functions can be virtual and there is also an offset to apply to thehidden this in case of multiple inheritance.
sizeof of a pointer to a member function can evenvary depending of the class.This is why we need to take special care when manipulating them.

Type Traits: QtPrivate::FunctionPointer

Let me introduce you to the QtPrivate::FunctionPointer type trait.
A trait is basically a helper class that gives meta data about a given type.Another example of trait in Qt isQTypeInfo.

What we will need to know in order to implement the new syntax is information about a function pointer.

The template<typename T> struct FunctionPointer will give us informationabout T via its member.

  • ArgumentCount: An integer representing the number of arguments of the function.
  • Object: Exists only for pointer to member function. It is a typedef to the class of which the function is a member.
  • Arguments: Represents the list of argument. It is a typedef to a meta-programming list.
  • call(T &function, QObject *receiver, void **args): A static function that will call the function, applying the given parameters.

Qt still supports C++98 compiler which means we unfortunately cannot require support for variadic templates.Therefore we had to specialize our trait function for each number of arguments.We have four kinds of specializationd: normal function pointer, pointer to member function,pointer to const member function and functors.For each kind, we need to specialize for each number of arguments. We support up to six arguments.We also made a specialization using variadic templateso we support arbitrary number of arguments if the compiler supports variadic templates.

The implementation of FunctionPointer lies inqobjectdefs_impl.h.

QObject::connect

The implementation relies on a lot of template code. I am not going to explain all of it.

Here is the code of the first new overload fromqobject.h:

Qt Connect Parent Slot Machine

You notice in the function signature that sender and receiverare not just QObject* as the documentation points out. They are pointers totypename FunctionPointer::Object instead.This uses SFINAEto make this overload only enabled for pointers to member functionsbecause the Object only exists in FunctionPointer ifthe type is a pointer to member function.

We then start with a bunch ofQ_STATIC_ASSERT.They should generate sensible compilation error messages when the user made a mistake.If the user did something wrong, it is important that he/she sees an error hereand not in the soup of template code in the _impl.h files.We want to hide the underlying implementation from the user who should not needto care about it.
That means that if you ever you see a confusing error in the implementation details,it should be considered as a bug that should be reported.

We then allocate a QSlotObject that is going to be passed to connectImpl().The QSlotObject is a wrapper around the slot that will help calling it. It alsoknows the type of the signal arguments so it can do the proper type conversion.
We use List_Left to only pass the same number as argument as the slot, which allows connectinga signal with many arguments to a slot with less arguments.

QObject::connectImpl is the private internal functionthat will perform the connection.It is similar to the original syntax, the difference is that instead of storing amethod index in the QObjectPrivate::Connection structure,we store a pointer to the QSlotObjectBase.

The reason why we pass &slot as a void** is only tobe able to compare it if the type is Qt::UniqueConnection.

We also pass the &signal as a void**.It is a pointer to the member function pointer. (Yes, a pointer to the pointer)

Signal Index

We need to make a relationship between the signal pointer and the signal index.
We use MOC for that. Yes, that means this new syntaxis still using the MOC and that there are no plans to get rid of it :-).

MOC will generate code in qt_static_metacallthat compares the parameter and returns the right index.connectImpl will call the qt_static_metacall function with thepointer to the function pointer.

Once we have the signal index, we can proceed like in the other syntax.

The QSlotObjectBase

QSlotObjectBase is the object passed to connectImplthat represents the slot.

Before showing the real code, this is what QObject::QSlotObjectBasewas in Qt5 alpha:

It is basically an interface that is meant to be re-implemented bytemplate classes implementing the call and comparison of thefunction pointers.

It is re-implemented by one of the QSlotObject, QStaticSlotObject orQFunctorSlotObject template class.

Fake Virtual Table

The problem with that is that each instantiation of those object would need to create a virtual table which contains not only pointer to virtual functionsbut also lot of information we do not need such asRTTI.That would result in lot of superfluous data and relocation in the binaries.

In order to avoid that, QSlotObjectBase was changed not to be a C++ polymorphic class.Virtual functions are emulated by hand.

The m_impl is a (normal) function pointer which performsthe three operations that were previously virtual functions. The 're-implementations'set it to their own implementation in the constructor.

Please do not go in your code and replace all your virtual functions by such ahack because you read here it was good.This is only done in this case because almost every call to connectwould generate a new different type (since the QSlotObject has template parameterswich depend on signature of the signal and the slot).

Protected, Public, or Private Signals.

Signals were protected in Qt4 and before. It was a design choice as signals should be emittedby the object when its change its state. They should not be emitted fromoutside the object and calling a signal on another object is almost always a bad idea.

However, with the new syntax, you need to be able take the addressof the signal from the point you make the connection.The compiler would only let you do that if you have access to that signal.Writing &Counter::valueChanged would generate a compiler errorif the signal was not public.

In Qt 5 we had to change signals from protected to public.This is unfortunate since this mean anyone can emit the signals.We found no way around it. We tried a trick with the emit keyword. We tried returning a special value.But nothing worked.I believe that the advantages of the new syntax overcome the problem that signals are now public.

Sometimes it is even desirable to have the signal private. This is the case for example inQAbstractItemModel, where otherwise, developers tend to emit signalfrom the derived class which is not what the API wants.There used to be a pre-processor trick that made signals privatebut it broke the new connection syntax.
A new hack has been introduced.QPrivateSignal is a dummy (empty) struct declared private in the Q_OBJECTmacro. It can be used as the last parameter of the signal. Because it is private, only the objecthas the right to construct it for calling the signal.MOC will ignore the QPrivateSignal last argument while generating signature information.See qabstractitemmodel.h for an example.

More Template Code

The rest of the code is inqobjectdefs_impl.h andqobject_impl.h.It is mostly standard dull template code.

I will not go into much more details in this article,but I will just go over few items that are worth mentioning.

Meta-Programming List

As pointed out earlier, FunctionPointer::Arguments is a listof the arguments. The code needs to operate on that list:iterate over each element, take only a part of it or select a given item.

That is why there isQtPrivate::List that can represent a list of types. Some helpers to operate on it areQtPrivate::List_Select andQtPrivate::List_Left, which give the N-th element in the list and a sub-list containingthe N first elements.

The implementation of List is different for compilers that support variadic templates and compilers that do not.

With variadic templates, it is atemplate<typename... T> struct List;. The list of arguments is just encapsulatedin the template parameters.
For example: the type of a list containing the arguments (int, QString, QObject*) would simply be:

Without variadic template, it is a LISP-style list: template<typename Head, typename Tail > struct List;where Tail can be either another List or void for the end of the list.
The same example as before would be:

ApplyReturnValue Trick

In the function FunctionPointer::call, the args[0] is meant to receive the return value of the slot.If the signal returns a value, it is a pointer to an object of the return type ofthe signal, else, it is 0.If the slot returns a value, we need to copy it in arg[0]. If it returns void, we do nothing.

The problem is that it is not syntaxically correct to use thereturn value of a function that returns void.Should I have duplicated the already huge amount of code duplication: once for the voidreturn type and the other for the non-void?No, thanks to the comma operator.

In C++ you can do something like that:

You could have replaced the comma by a semicolon and everything would have been fine.

Where it becomes interesting is when you call it with something that is not void:

There, the comma will actually call an operator that you even can overload.It is what we do inqobjectdefs_impl.h

Qt Connect Parent Slot

ApplyReturnValue is just a wrapper around a void*. Then it can be usedin each helper. This is for example the case of a functor without arguments:

This code is inlined, so it will not cost anything at run-time.

Conclusion

This is it for this blog post. There is still a lot to talk about(I have not even mentioned QueuedConnection or thread safety yet), but I hope you found thisinterresting and that you learned here something that might help you as a programmer.

Update:The part 3 is available.